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[1] The time continuity of measurements from the Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) on board the Meteosat Second Generation (MSG) Meteosat‐8/9
and from the Advanced Baseline Imager (ABI) on board the next generation of
Geostationary Operational Environmental Satellite (GOES‐R) can be uniquely taken into
account for infrared (IR) land surface emissivity (LSE) retrievals. The algorithm is based
on the assumption that land surface temperature (LST) is temporally variable while the
LSE is temporally invariable within a short period of time, i.e., a few hours. SEVIRI/ABI
radiances from multiple time steps can be used to retrieve temporally invariable IR LSE
and variable LST. The algorithm theoretical basis is described. Sensitivity studies with
simulations show that (1) the algorithm is less sensitive to the first guesses of LST and the
8.7 mm LSE but quite sensitive to the first guesses of the 10.8 and 12 mm LSE, (2) the
algorithm is weakly sensitive to the observational noise and radiative transfer calculation
uncertainty (in the form of random noise), and (3) except for the 8.7 mm LSE and LST, the
algorithm is weakly sensitive to the radiance biases from dust contamination but sensitive
to the radiance biases in the 12 mm channel from the radiative transfer calculation. It is
emphasized that the radiance biases from dust contamination are very difficult if not
impossible to estimate due to the high temporal and spatial variations of the spatial
distribution and optical properties of dust aerosol. It is also found that the algorithm is
sensitive to the LST weighting functions rather than the sensor’s local zenith angle; as long
as the LST weighting functions are large enough, the retrieval precision is good.
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1. Introduction

[2] Infrared (IR) land surface emissivity (LSE) with high
spatial resolution is very important for deriving other pro-
ducts using IR radiance measurements as well as assimi-
lating IR radiances in numerical weather prediction (NWP)
models over land [Le Marshall et al., 2006]. Products that
require emissivity information include but are not limited to:
temperature and moisture retrievals from the Geostationary
Operational Environmental Satellite (GOES) Sounder and
other IR sounders [Menzel and Purdom, 1994; Menzel et al.,
1998; Ma et al., 1999; Jin et al., 2008; Li et al., 2008, 2009;
Liu et al., 2008; Jin and Li, 2010; C.‐Y. Liu et al., The

upper tropospheric signatures of storms from hyperspectral
resolution infrared soundings, submitted to Geophysical
Research Letters, 2010], land surface temperature from the
GOES Imager and Moderate Resolution Imaging Spectro-
radiometer (MODIS) [Becker and Li, 1990; Wan and
Dozier, 1996; Yu et al., 2008], dust and aerosol property
retrievals [Zhang et al., 2006; Li et al., 2007a], the cloud top
pressure (CTP) product [Menzel et al., 1992, 2008; Li et al.,
2001, 2005], radiation budget [Lee et al., 2007] and trace
gas retrievals [Clerbaux et al., 2003; Ho et al., 2005]. A
global IR LSE product developed from MODIS observa-
tions [Wan and Li, 1997] has been used in research
[Seemann et al., 2008]. Similar broadband emissivity
research product from the High‐resolution Infrared Radia-
tion Sounder (HIRS) has also been derived [Ruston et al.,
2008], but with a coarser spatial resolution. A monthly
global database [Seemann et al., 2008] has been developed
based on the MODIS emissivity product and hyperspectral
IR emissivity measurements from laboratory measurements.
Hyperspectral resolution IR sounders on board the polar
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orbiting low Earth orbit (LEO) satellites, such as the
Atmospheric Infrared Sounder (AIRS) [Chahine et al.,
2006] on board the NASA Earth Observing System (EOS)
Aqua platform, the Interferometer Atmospheric Sounding
Instrument (IASI) on board the European Meteorological
Operational Satellite Programme (Metop‐A), the Cross‐
track Infrared Sounder (CrIS) on the Joint Polar‐orbiting
Satellite System (JPSS), are capable of retrieving the
emissivity spectrum. Recently, algorithms have been
developed for retrieving hyperspectral IR emissivity spectra
from global radiance measurements from advanced sounders
[Li et al., 2007b, 2008; Zhou et al., 2008] on board LEO
(low Earth orbit) satellites such as Aqua and Metop‐A [Li
and Li, 2008]. LEO emissivity may be used for geosta-
tionary orbit (GEO) products since it can be updated rou-
tinely and converted to GEO IR bands; however, due to the
view angle difference between GEO and LEO, and the
orbital gaps of LEO, the application of LEO emissivity to
GEO products has some limitations. In addition, for GOES‐
R products, a LEO emissivity database may lack informa-
tion on temporal variations. Therefore, it is important to
develop the emissivity from ABI spectral bands directly so
that other ABI products (land surface temperature, dust/
aerosol, radiation budget, cloud top properties, OLR, etc.)
have the option of using the ABI emissivity product.
[3] IR LSE varies with land surface type (according to soil

type, land cover, and land use) [Snyder et al., 1998; Peres
and DaCamara, 2005], viewing angle [Francois et al.,
1997; McAtee et al., 2003], and time (following changes
in the state of the vegetation and weather conditions, such as
dew formation, rainfall, or snowfall). Nevertheless, many
numerical weather prediction and climate models still use
static maps with a limited number of possible emissivity
values prescribed per surface type [Jin and Liang, 2006;
Sherlock, 1999; Ogawa and Schmugge, 2004; Trigo et al.,
2008]. Several methods have been proposed for the
retrieval of IR emissivity from remote sensing data. The top
of atmosphere (TOA) radiance is a combination of surface
emitted radiance (in itself a result of emissivity and surface
temperature) and the surface reflection of downward atmo-
spheric flux, which are both absorbed and reemitted by the
atmosphere, along with the upward emitted atmospheric
radiation. Because of this mixing of surface (emissivity and
temperature) and atmospheric signal, the direct retrieval of
emissivity is very difficult. Different approaches for solving
the direct retrieval of emissivity include the temperature‐
emissivity separation method followed by the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) team [Gillespie et al., 1999], the two‐temperature
method (TTM) [Watson, 1992; Faysash and Smith, 1999,
2000; Peres and DaCamara, 2004], and the day/night land
surface temperature (LST) algorithm applied to MODIS data
[Wan and Li, 1997], among others [Rodger et al., 2005;
Morgan, 2005]. All of these methods provide spectral (or
channel) emissivity, which would have to be converted into
broadband values for model applications. A different
approach called the vegetation cover method (VCM) [Peres
and DaCamara, 2005; Caselles et al., 1997] combines the
pixel fraction of vegetation cover (FVC) with a lookup table
developed for spectral and broadband emissivities, and as-
signed to different vegetation and bare‐ground types within
a land cover classification. The pixel effective emissivity is

estimated using information on the proportion of vegetation
and exposed surfaces.
[4] Each approach mentioned above has advantages and

drawbacks. The choice of a given methodology essentially
relies on the sensor characteristics, the required accuracy
versus computation time, and the availability of (reliable)
atmospheric temperature and humidity profiles. The fol-
lowing two methodologies are currently pursued by the
Satellite Application Facility on Land Surface Analysis
(Land SAF, http://landsaf.meteo.pt) [Schmetz et al., 2002;
DaCamara, 2006]: (1) the Land SAF operational scheme
consisting of a version of the VCM applied to the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) on board
the Meteosat Second Generation (MSG) geostationary sa-
tellites and (2) an adaptation of TTM applied to SEVIRI
split‐window channels.
[5] In this study, an algorithm is developed based on both

the spectral and temporal information from GEO IR radi-
ance measurements. The algorithm is based on the
assumption that LST is temporally variable while the land
surface emissivity is temporally invariable within a short
period of time (several hours). SEVIRI/ABI radiances from
multiple time steps will be used to retrieve temporally
invariable IR LSE and variable LST. A simulation study of
SEVIRI has been conducted to determine the feasibility of
the algorithm for LSE retrieval from GEO IR measurements.
The LSE retrieval sensitivity to the first guesses, the local
zenith angle, the observational noise, radiative transfer cal-
culation uncertainty and radiance bias (due to dust con-
tamination and radiative transfer model) are studied and
analyzed.

2. Data Set for Simulation Study With SEVIRI

[6] A match‐up data set [Li et al., 2009, 2010] is used to
help describe the methodology. This data set includes: (1)
temperature and moisture profiles from radiosonde ob-
servations (RAOB) from the U.S. Department of Energy
Atmospheric Radiation Measurement (ARM) Program at the
Southern Great Plains (SGP) site [Miloshevich et al., 2006]
at Lamont, OK (C1, 36°37′N, 97°30′W) (2) the Global
Forecast System (GFS) 6 h forecast; (3) the laboratory‐
measured LSE spectrum from the MODIS emissivity library
(http://www.icess.ucsb.edu/modis/EMIS/html/em.html) and
the ASTER spectral library [Salisbury et al., 1994]; and (4)
the LST measured by the infrared radiometer at the ARM
site [Morris et al., 2006]. The time coverage is from August
2006 to August 2009. The sample size for clear skies with
RAOB data at the ARM site is 1718.
[7] The ARM RAOBs are preferred to the conventional

RAOB because they are more frequent (4 times a day), and
have better overall quality [Turner et al., 2003; Li et al.,
2009]. The sampling rate is 2 s through the flight. For
each sample output, details about time in seconds and a
quality flag are provided.
[8] The simulated SEVIRI radiances are calculated using

the Pressure‐Layer Fast Algorithm for Atmospheric Trans-
mittance (PFAAST) models [Hannon et al., 1996] with the
RAOB profiles, the measured LST and the laboratory‐
measured LSE. PFAAST is based on the line‐by‐line radi-
ative transfer model (LBLRTM) version 8.4 [Clough and
Iacono, 1995] and the high‐resolution transmission molec-

LI ET AL.: LAND SURFACE EMISSIVITY RETRIEVAL D01304D01304

2 of 15



ular absorption database‐2000 (HITRAN‐2000) [Rothman
et al., 1992] with updates (aer_hitran_2000_updat_01.1).
[9] The first guesses of LST and the surface emissivities

are generated using

xg ¼ xt þ E �xtð Þ; ð1Þ

where xg is the first guess, xt is the true parameter, and E(dxt)
is a random number with a bias of 0 and a standard deviation
(STD) of dxt (10 K for LST; 0.1, 0.02 and 0.02 for emis-
sivities of 8.7, 11 and 12 mm, respectively). The first guesses
of LSE are restrained within [0.5 0.99], [0.85 0.99] and [0.9
0.99] for the three channels. The GFS forecast is used as the
first guess for the atmospheric profiles.
[10] This study describes the methodology of the LSE/

LST retrieval algorithm using simulated SEVIRI observa-
tions. SEVIRI is a 12‐channel imager on board the Meteosat
Second Generation (MSG) (Meteosat 8 and 9). It observes
the full disk of the Earth every 15 min [Schmetz et al., 2002;
Aminou et al., 2003]. Among the 12 SEVIRI channels in
Table 1, only the three window channels in thermal IR (TIR)
(8.7, 10.8 and 12 mm) are tested. The water vapor (6.2 and
7.3 mm), CO2 (13.4 mm) and ozone (9.7 mm) channels are
not sensitive enough to the surface for LSE and LST
retrieval. The 3.9 mm channel is excluded due to the diffi-
culty with the radiative transfer calculation for the solar
radiation.

3. Methodology

3.1. Radiative Transfer Equation and Linearization

[11] In this paper, the vectors and matrices are written in
bold, while the scalars are written in regular italic. If we
neglect scattering by the atmosphere, the true clear spectrum
of the IR window spectral band radiance exiting the Earth‐
atmosphere system is approximated by the radiative transfer
equation (RTE)

R ¼ "B Tsð Þ�s �
Zps

0

B Tð Þd� 0; pð Þ þ 1� "ð Þ
Zps

0

B Tð Þd�� þ R′ þ e;

ð2Þ

where R is the exiting radiance at the top of the atmosphere
or SEVIRI IR radiance, " is the surface emissivity, B(T) is
the Planck function, t(0, p) is the atmospheric transmittance

from the top to the atmospheric pressure p, subscript s
denotes the surface, t* = ts

2/t is the downwelling trans-
mittance, e is forward model uncertainty and R′ is the
reflected solar radiation, which is ignored in the longwave
IR window region. As shown in equation (2), the SEVIRI IR
radiance has three major contributions: the surface emission,
the upwelling atmosphere emission, and the reflection of the
downwelling atmosphere emission by the surface.
[12] The retrieval problem is to solve the variables on the

right side of equation (2) for the given observations of ra-
diances. Since the inverse problem is nonlinear and ill‐
posed, there are no analytical solutions for the retrieval
problem, and regularization is needed. Usually, the first step
is to linearize the RTE. Neglecting impacts from ozone and
other trace gases, equation (2) could be linearized to the first
order as

�R ¼ KTs�Ts þ K"�"þ
X

KT �T þ
X

KQ� lnQþ e; ð3Þ

where dR is the radiance perturbation, which is the differ-
ence between the observation and the radiative transfer
calculation from the first guess, K is the weighting function,
defined as Kx ¼ @R

@x, where x is the variable to be retrieved.
It shows the sensitivity of the radiance at the TOA with
respect to the change in the variable x. S is the sum over
different atmospheric layers. Q is the water vapor mixing
ratio. Notice the logarithm of the mixing ratio is used
because it has a better linear relationship with the radiance.
e in equation (3) contains both forward model uncertainty
and observation noise. Equation (3) shows that the radiance
perturbation has three components: the LST, the LSE, and
the atmosphere (including the temperature and the moisture
profiles). Any perturbation in these components results in
departure of the calculated radiances from the observed ones.
[13] Figure 1 shows the examination of the first‐order

linearization approximation using the matchup database. In
each panel, only one variable is allowed to have any per-
turbation (radiative transfer calculation using the first guess
instead of the true state), meaning that the radiance pertur-
bation is only caused by that variable. The x axis represents
the calculation from the left side of equation (3), and the
y axis represents the calculation from the right side of
equation (3). A perfect linearization approximation would
see these two exactly the same.

Table 1. Spectral Channel Characteristics of SEVIRI in Terms of Central, Minimum, and MaximumWavelength of the Channels and the
Main Application Areas of Each Channela

Channel Number Spectral Band (mm) lcen(mm) lmin(mm) lmax(mm) Main Observational Application

1 VIS0.6 0.635 0.56 0.71 Surface, clouds, wind fields
2 VIS0.8 0.81 0.74 0.88 Surface, clouds, wind fields
3 NIR1.6 1.64 1.50 1.78 Surface, cloud phase
4 IR3.9 3.90 3.48 4.36 Surface, clouds, wind fields
5 WV6.2 6.25 5.35 7.15 Water vapor, high level clouds, atmospheric instability
6 WV7.3 7.35 6.85 7.85 Water vapor, atmospheric instability
7 IR8.7 8.70 8.30 9.1 Surface, clouds, atmospheric instability
8 IR9.7 9.66 9.38 9.94 Ozone
9 IR10.8 10.80 9.80 11.80 Surface, clouds, wind fields, atmospheric instability
10 IR12.0 12.00 11.00 13.00 Surface, clouds, atmospheric instability
11 IR13.4 13.40 12.40 14.40 Cirrus cloud height, atmospheric instability

aThe three channels in bold are used for LSE retrieval. Channel 12 is not listed.
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[14] All three channels show larger than 0.99 correlation
coefficients (R) for LST, LSE and temperature profiles
(Figures 1a, 1b and 1c), indicating strong linear relation-
ships. Together with the small STD and bias, it is clear that
that radiative transfer equation could be linearized using a
first‐order linearization approximation with respect to LST,
LSE and the temperature profiles. Notice that the large STD
of the LSE (0.835 K) at 8.7 mm comes from large pertur-
bations of the 8.7 mm LSE first guess.
[15] However, for the moisture profiles in Figure 1d, the

first‐order linear approximation is not good enough. All three
channels have correlation coefficients less than 0.86, and the
STDs are larger than 0.28 K, indicating that the first‐order
linear approximation is insufficient. In fact, better agree-
ments could be reached if a second‐order expansion for
moisture is included (not shown). However, the second‐order
expansion only increases the complexity of equation (3),
which makes it more difficult to solve.

3.2. Atmospheric Correction

[16] It is difficult to solve equation (3) with only three
window channels. The linearization approximation analysis
above shows more complexity with the atmospheric pro-
files, especially the moisture profiles. It is therefore neces-
sary to simplify equation (3) without introducing significant
errors. A simplified equation (3) not only makes it easier
to solve for LSE and LST, but also with better retrieval
precision.
[17] The easiest way to simplify equation (3) is to remove

the atmospheric contributions (third and fourth terms on the
right side). This removal is equivalent to assuming that
the atmospheric states are known and the first guesses of the
atmospheric profiles perfectly represent the true state. The
first guesses can be either NWP forecast profiles, satellite
retrievals or even a climatological background. This method
introduces some substantial errors as analyzed below.

Figure 1. Evaluation of first‐order linearization of the radiative transfer equation for SEVIRI 8.7, 10.8,
and 12 mm for (a) the land surface temperature, (b) the surface emissivity, (c) the temperature profile, and
(d) the moisture profile. The x axis represents the actual brightness temperature (Tb) differences as obser-
vation minus the calculation, and the y axis represents the Tb difference calculated using a first‐order lin-
earization approximation. For each plot, only the variable in that plot was perturbed.
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[18] Assume the goal precisions for retrievals are 1 K for
LST; 0.02, 0.015 and 0.015 for LSE at 8.7, 10.8 and 12 mm,
respectively. Figure 2 shows the histogram of radiance de-
viations Kxdx, caused by errors in LST, the three LSE and
GFS forecast profiles using the simulation data. Comparing
Figures 2a and 2b with Figures 2c and 2d, the errors of LST
and LSE cause more brightness temperature (Tb) deviations
than those caused by the errors of the GFS forecast (larger
STDs). For LST, the 10.8 mm channel sees more Tb de-
viations (STD of 0.77 K) because it is the cleanest window
channel among the three channels. For LSE, the 8.7 mm
channel sees more Tb deviations (STD of 0.72 K) because
of worse precision (0.02) than the other two channels
(0.015). Compared with LSE and LST, the errors of the GFS
forecast cause fewer Tb deviations, especially from tem-
perature profiles (STD of Tb deviations is only around
0.2 K). The moisture profiles cause more Tb deviations
(STD of Tb deviations are around 0.5 K) but still fewer than
those caused by inaccuracy of LST and LSE. Together,
STD of Tb deviations caused by both temperature and
moisture profiles are 0.58, 0.49 and 0.62 K (not shown in
Figure 2). These are the errors introduced into equation (3)
by removing the atmospheric contribution. These errors are
equivalent to LSE errors of 0.014, 0.011, and 0.014 for 8.7,
10.8 and 12 mm, respectively.
[19] Clearly, if the objective retrieval precision is 1 K,

0.02, 0.015 and 0.015 for LST, LSE at 8.7, 10.8 and 12 mm,

removing the atmospheric contribution in equation (3)
makes it difficult to achieve such precisions. In this study,
one single variable is used to represent the atmospheric
contribution

�T
X

KT ¼
X

KT �T þ
X

KQ� lnQ; ð4Þ

where dT is a combination of temperature and moisture
error profiles. For each channel, the radiance deviation
caused by errors in the atmospheric profiles can be ex-
pressed as

�Tb ¼ �T
X

KT : ð5Þ

Let K̂T = SKT, equation (5) can be rewritten in vector format

�Tb ¼ K̂T�T ; ð6Þ

where dTb and K̂T are vectors, and dT is a scalar. Equation
(6) reduces the errors from atmospheric profiles by elimi-
nating errors that can be linearized using K̂T. The remaining
radiance deviations from atmospheric profiles cannot be
linearized, and can be estimated using

�T̂b ¼ K̂
′

T K̂T

� ��1
K̂

′

T �Tb � �Tb; ð7Þ

Figure 2. The histogram of radiance deviations caused by the inaccuracy of (a) LST, (b) LSE,
(c) temperature profiles, and (d) moisture profiles. Note the moisture has a comparable impact (STDs
around 0.5 K) to LST (STDs around 0.7 k) and LSE (STDs around 0.6 K), indicating neglecting atmo-
spheric terms is inappropriate for LSE/LST retrievals.
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where dT̂b is the remaining radiance deviation from the
atmospheric profiles, and the prime denotes the transpose.
The first term on the right side represents the radiance
deviation from the atmospheric profile solved by equation
(6), and dTb is the actual Tb deviation. The simulation
study shows that the STD of the radiance deviations for the
three channels is greatly reduced to 0.31, 0.18 and 0.25 K.
These are very small errors considering the uncertainty from
the radiative transfer calculations (approximately 0.2 K
estimated from intercomparison of different RT models).
[20] Substituting equation (5) into equation (3), the new

linearized equation is

�R ¼ KTs�Ts þ K"�"þ K̂T�T þ e: ð8Þ

This is the equation used to solve LSE and LST along
with dT .

3.3. Time Continuity

[21] For a general case, supposing there are N channels,
there are N+2 unknowns in equation (8): 1 LST, N LSE and
1 dT . For a single time, the number of unknowns (N+2) is
always larger than the number of equations (N). Therefore
equation (8) is underdetermined. As a result, it will be dif-
ficult to achieve good retrieval precision.
[22] Taking advantage of the high temporal information,

the SEVIRI LSE algorithm is based on the assumption that
the IR LSE is temporally invariable while LST is temporally
variable within a short period of time. Let M be the number
of time steps. The total number of equations is MxN. And
the number of unknowns is N+2M (each time step has one
LST and one dT ). For better retrieval precisions, it is better
that the number of equations is equal or larger than the
number of unknowns, or

M� N � Nþ 2M: ð9Þ

In this study, the number of channels is N = 3. The solution
of equation (9) is M ≥ 3; in other words at least three time
steps are needed.
[23] The selection of the number of time steps and the

time interval between two consecutive time steps is critical.
Three factors are considered: the assumption of time con-
tinuity, the contrast among different time steps, and cloud
contamination. The time span from the first to the last time
step cannot be too large, otherwise the assumption of
invariable LSE is violated, and the chance for all three
observations to be clear is reduced. For better retrieval
precision, it is important that there are substantial land
surface temperature contrasts between different time steps.
Therefore, the time distance between consecutive steps
cannot be too small. In this study, the algorithm was
applied to real SEVIRI radiance observations with different
time steps and time intervals. The retrievals are carefully
examined focusing on both spatial coverage and temporal
consistency. The results show that three time steps with a
time range of 3 h are adequate. Therefore, SEVIRI ra-
diances at the current time step (T0) will be used together
with those at 3 h before (T‐3) and 6 h before (T‐6) for the
LSE and LST retrieval.

3.4. Inverse Algorithm

[24] For three time steps and three channels, there are 9
equations and 9 unknowns. Let

Y ¼

R1
1

R1
2

R1
3

R2
1

R2
2

R2
3

R3
1

R3
2

R3
3

2
6666666666664

3
7777777777775

; X ¼

T 1
s

T 2
s

T 3
s
"1
"2
"3
T
1

T
2

T
3

2
6666666666664

3
7777777777775

; and

K ¼

K1
Ts;1

0 0 K1
";1 0 0 K̂

1
T ;1 0 0

K1
Ts;2

0 0 0 K1
";2 0 K̂

1
T ;2 0 0

K1
Ts;3

0 0 0 0 K1
";3 K̂

1
T ;3 0 0

0 K2
Ts ;1

0 K2
";1 0 0 0 K̂

2
T ;1 0

0 K2
Ts ;2

0 0 K2
";2 0 0 K̂

2
T ;2 0

0 K2
Ts ;3

0 0 0 K2
";3 0 K̂

2
T ;3 0

0 0 K3
Ts ;1

K3
";1 0 0 0 0 K̂

3
T ;1

0 0 K3
Ts ;2

0 K3
";2 0 0 0 K̂

3
T ;2

0 0 K3
Ts ;3

0 0 K3
";3 0 0 K̂

3
T ;3

2
6666666666666666664

3
7777777777777777775

:

[25] Here, the number in superscript denotes the time step,
and the number in subscript denotes the channel index.
Equation (8)) can be written as

�Y ¼ K�Xþ e: ð10Þ

Here, K is the linear or tangent model of the forward radi-
ative transfer model. It is also called a Jacobian matrix or k
matrix. A simple least square method gives an iterative
solution to equation (10)

�Xnþ1 ¼ K′
nE

�1Kn

� ��1
K′

nE
�1 �Yn þKn�Xnð Þ; ð11Þ

where dXn = Xn − X0, dYn = Ym − Y(Xn), Kn is the
Jacobian matrix in the nth iteration, E is the observation
error covariance matrix which includes instrument noise and
forward model uncertainty. Xn is the vector of the para-
meters to be retrieved, X0 is the initial state or the first guess,
Ym is the vector of the observed radiances used in the
retrieval process, and Y(Xn) is the calculated radiances
based on the atmospheric and surface state of Xn. For the
given first guesses and the satellite observations, the para-
meters can be retrieved using equation (11), if the matrix
K′nE

−1Kn is invertible.
[26] However, one might find no solution or the solutions

may not be realistic because the matrix K′nE
−1Kn is singular

or near singular, in which the iteration will be unstable. Any
noise in dYn will be greatly amplified, and the retrieval will
be unrealistic. Therefore, an optimal estimate method is
needed to solve equation (10). A general form of the vari-
ational solution is to minimize the following cost function
[Rodgers, 1976; Li et al., 2000]

J Xð Þ ¼ Ym � Y Xð Þ½ �′E�1 Ym � Y Xð Þ½ � þ X� X0½ �′�H X� X0½ �;
ð12Þ

LI ET AL.: LAND SURFACE EMISSIVITY RETRIEVAL D01304D01304

6 of 15



where H is the a priori matrix that constrains the solu-
tion, and g is the regularization parameter. H can be the
inverse of the a priori first guess error covariance matrix
or another type of matrix. By applying the following
Newtonian iteration:

Xnþ1 ¼ Xn þ J ′′ Xnð Þ�1 � J ′ Xnð Þ; ð13Þ

the following quasi‐nonlinear iterative form is obtained:

�Xnþ1 ¼ K′
nE

�1Kn þ �H
� ��1

K′
nE

�1 �Yn þKn�Xnð Þ: ð14Þ

Compared with the least square method solution in equation
(11), the only difference is that equation (14) has one extra
term gH. Physically, this term provides background infor-
mation, so that the adjustment of the retrieval parameters is
made accordingly in the iterations. Mathematically, this
term adds extra positive values along the diagonal direction
of matrix K′nE

−1Kn, decreasing the singularity of it and
making the inverse (K′nE

−1Kn)
−1 possible and stable.

3.4.1. The First Guess (X0)
[27] For nonlinear ill‐posed inverse problems, the quality

of the first guess is critical for the retrieval precision. In the
simulation study, the 6 h forecast fields provided by the
NCEP (National Centers for Environmental Prediction) GFS
at half a degree are used as the temperature and moisture
profile first guesses. Each profile is interpolated both in
space and time to fit the time and location of the actual
satellite observation. The LSE and LST first guesses are
randomly generated as described in section 1. When applied
to real data, the LST first guess can be from a regression
retrieval using a satellite observation or NWP forecast,
while the LSE first guess can be from a regression retrieval
using satellite observations or a predetermined database. In
the case of the regression, the averaged emissivities from
multiple time steps are used.
3.4.2. The First Guess Error Covariance Matrix
[28] The first guess error covariance matrix must be

consistent with the first guesses. There is no universal
covariance matrix suitable for all first guesses. Ideally, the
inverse of the first guess error covariance matrix is obtained
by inverting the first guess error covariance matrix. Since
the first guesses of LSE and LST are randomly generated,
the correlative errors are small and negligible, which in-
dicates the off‐diagonal elements of the inverse of the error
covariance matrix could be set as zero. The diagonal ele-
ments are calculated with an LST error of 10 K and LSE
error of 10%, 2% and 2% for the three channels, and dT
error of 1 K. Therefore the H matrix is defined as follows:

H ¼

0:01
0:01 0

0:01
100

2500
2500

1
0 1

1

2
6666666666664

3
7777777777775

:

ð15Þ

In the matrix, the 0.01 is derived by 1/(10 * 10), while 100 is
derived by 1/(0.1 * 0.1).
3.4.3. The Observation Error Covariance Matrix
[29] Normally, matrix E includes two components: the

observation noise and the radiative transfer model uncer-
tainty. The observation noise is estimated based on the in-
strument’s characteristics. It is typically less than 0.15 K for
the three window channels. The forward model uncertainty
is estimated from the intercomparison of different radiative
transfer models. The uncertainty is assumed to be 0.2 K for
the three window channels. Similar to the inverse of the
background error covariance matrix, matrix E is a diagonal
matrix. This is equivalent to assuming that there are no
correlative errors among the observed radiances and the
forward model uncertainties. Matrix E takes the form

E ¼

e21;1
e22;1 0

e23;1
e21;2

e22;2
e23;2

e21;3
0 e22;3

e23;3

2
666666666666664

3
777777777777775

;

ð16Þ

where ei,j is the combined error from the observation noise
and the forward model uncertainty for the ith channel at the
jth time step.
3.4.4. Jacobian Matrix
[30] The Jacobian matrix or k matrix Kn (the subscript n

denotes the nth iteration in the physical retrieval procedure)
describes the change of the radiance at the TOA with respect
to the change in the parameters to be retrieved. It can be
calculated by a differential scheme or analytical method [Li
et al., 2000]. In this study, the latter method is used for
computational efficiency.
3.4.5. Discrepancy Principle for Regularization
Parameter
[31] The reason to introduce the regularization parameter

g (also called the smoothing factor) is to (1) speed up the
convergence, and (2) stabilize the solution. The factor g
weights the contribution of the first guess and the satellite
observations for the solution. If g is large, more weight is
given to the first guess and the solution tends not to deviate
far from the first guess, thus reducing the potential positive
impacts of the satellite measurements. If g is small, more
weight is given to the satellite observations; however,
because the inverse problem is ill‐posed and the information
from the IR window bands is not completely independent of
one another, the solution could be unstable. Objective
selection of g is therefore very important for an accurate and
stable solution. The discrepancy principal is used to deter-
mine this regularization parameter [Li and Huang, 1999]
according to the following equation,

kY Xn �ð Þ½ � � Ymk2¼ �2; ð17Þ

where s2 =
P3
i¼1

P3
j¼1

ei,j
2 . Since equation (17) has a unique

solution for g, equation (14) and (17) can be solved
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simultaneously. For simplicity, a numerical approach [Li et
al., 2000] is adopted for solving equation (17); g is changed
in each iteration according to

�nþ1 ¼ qn�n ð18Þ

where q is a factor for g to increase or decrease. Based on
equation (18), q is obtained within each iteration by satis-
fying the following conditions:

q0 ¼ 1:0;

[32] If kY[Xn(g)] − Ymk2 < s2, then qn = 1.1;
[33] If kY[Xn(g)] − Ymk2 = s2, then stop the iteration;
[34] If kY[Xn(g)] − Ymk2 > s2, then qn = 0.9.
[35] The q factor has been found effective from empirical

experiments to ensure a stable solution. Thus, g continues to
change until the iteration stops.
[36] In the retrieval processing, several checks are made

for iteration quality control. The quantity Rsn = kY(Xn) −
Ymk2 is computed to check the convergence or divergence
as follows:

[37] If s2 < Rsn+1 < Rsn, the iteration is converging, and
the processing continues.
[38] If Rsn+1 < s2 or ∣Rsn+1 − s2∣ < 0.05, the iteration

reaches a point where no further information can be
retrieved, and the iteration stops.
[39] If Rsn+1 > Rsn, the iteration is diverging, and pro-

cessing stops. The first guess is used as the final retrieval.
The degree of convergence for each iteration depends on the
accuracy of retrieved parameters from the previous iteration.

4. Simulation Study and Error Analysis

[40] The matchup database introduced in section 2 is used
to test the algorithm. Note the time difference between two
consecutive time steps is 6 h instead of 3 h because the
RAOB at the ARM site is launched every 6 h. After cloud
detection, 693 sets of samples are available for the test.
Noise is added to each channel based on the instrument
characteristics and model uncertainty. For each sample, the
retrieval is performed 43 times at a different LZA from 0 to
84 with an increment of 2 degrees. Figure 3 shows the
scatterplots of the LSE in the three channels and LST, along

Figure 3. The scatterplots of the retrieval parameters against the true values for (a) LST, (b) 8.7 mm
LSE, (c) 10.8 mm LSE, and (d) 12 mm LSE. The x axis represents the true values, and the y axis represents
the retrieved values. The blue represents the first guesses, and the red represents the physical retrievals.
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with the statistics for a 0 degree LZA. Although in equation
(10) there are nine unknowns to be retrieved; only four are
shown in Figure 3. The last three unknowns are not shown
because they are combinations of temperature and moisture,
and have no physical meaning. There are three time steps of
LST. Only the LST from the first time step is shown as the
other two have the same statistics. For all four variables, the
physical retrieval algorithm successfully brings them closer
to the true values. In particular, for LST and LSE at 8.7 mm,
the retrievals are significantly better than the first guesses;
the root‐mean‐square (RMS) error for LST is reduced from
10 K to 1.04 K; and the RMS of the 8.7 mm LSE is reduced
from 0.087 to 0.018. For the 10.8 and 12 mm LSE, the
algorithm is also able to improve the first guesses; the RMS
is reduced from 0.018 to less than 0.015. However, the
improvements are less significant compared with LST and
LSE at 8.7 mm.
[41] The goal of this study is to develop an algorithm that

is less sensitive to: the first guess, the local zenith angle, and
radiance noise. It is known that the inverse problem in this
study is an ill‐posed nonlinear problem, which means the
retrieval will be dependent on the quality of the first guesses
and observation noise, which in this study include instru-
ment noise and the forward model uncertainty. Figure 4
shows how the quality of the first guess affects the
retrieval of LSE and LST. In each panel of Figure 4, only
one first guess is allowed to have a different precision. From

Figure 4a, the retrieval precisions of all four parameters are
not affected much by the accuracy of the LST first guess.
When the precision of the LST first guess is degraded from
2 K to 10 K, the retrieval precisions for the four parameters
are degraded by less than 0.01 K, 0.0002, 0.0002, and
0.0002. This result indicates the quality of the LST first
guess is not important for the retrieval. Figure 4b shows that
the precision of the first guess of the 8.7 mm LSE is not
important either. The retrieval precisions for the four para-
meters are also very weakly affected when the precision of
the first guess of the 8.7 mm LSE is degraded from 0.02 to
0.1. On the contrary, Figures 4c and 4d show that the
retrieval precisions for all four variables are highly affected
by the quality of the first guesses of 10.8 and 12 mm LSE.
When the precision of the first guess of the 10.8 mm LSE is
degraded from 0.005 to 0.04, the retrieval precisions are
degraded greatly. In particular, for LST the retrieval preci-
sion is degraded from 0.96 K to 1.46 K. For the 8.7 mm
LSE, the retrieval precision is also greatly degraded from
0.017 to 0.026. Finally, the 10.8 mm LSE is degraded the
most among the three channels; the precision change is
0.013. Comparing Figures 4c and 4d, the retrieval is slightly
less affected by the 12 mm LSE than the 10.8 mm LSE
because the 12 mm is more affected by water vapor
absorption than the 10.8 mm. The weighting functions of
LST and LSE are typically smaller than those for the

Figure 4. The impacts of the first guesses on the physical retrieval from (a) LST, (b) 8.7 mm LSE,
(c) 10.8 mm LSE, and (d) 12.0 mm LSE. The x axis represents the RMSE of the first guess. Blue solid
lines represent the LST retrieval RMS (the left coordinate). Green, red, and cyan dotted lines represent
retrieval RMS for 8.7, 10.8, and 12 mm LSE, respectively (the right coordinate).
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10.8 mm, resulting in less sensitivity to the accuracy of the
first guess of the 12 mm LSE.
[42] The previous results show that the quality of the first

guess is extremely important for the 10.8 and 12 mm LSE,
and much less important for the 8.7 mm LSE and LST.
These three channels are all in TIR window region, and they
are all sensitive to the surface. The question is why the
quality of the 10.8 and 12 mm LSE first guesses affects the
retrieval much more than that of the 8.7 mm LSE? To
explain that, equation (10) is written as

Y ¼ KXþ e; ð19Þ

where Y is a vector of the observation, K is a known matrix,
X is the vector to be solved, and e is a vector of the
observational noise. If K is changed to K + dK, the X will
change to X + dX, such that

Y ¼ K þ �Kð Þ Xþ �Xð Þ þ e: ð20Þ

From the above two equations,

KX ¼ K þ �Kð Þ Xþ �Xð Þ

or � �X ¼ K�1�K Xþ �Xð Þ;
ð21Þ

where K−1 is an inverse of K, and can be obtained using
single value decomposition. Taking the norm on both sides
of equation (21), we have

k�Xk � kK�1kk�KkkXþ �Xk

or
k�Xk

kXþ �Xk � kKkkK�1k k�Kk
kKk :

ð22Þ

In mathematics, kKkkK−1k is defined as the condition
number of the matrix K. Equation (23) indicates that the
relative error in a solution vector is smaller than the con-
dition number times the relative error in the matrix K.
Therefore, the condition number is a measure of a solution’s
sensitivity to the error in K, which comes from the error in
the first guess. A small condition number indicates the
problem is well conditioned, while a large condition number
indicates the problem is ill conditioned. The solution of a

well‐conditioned problem is less affected by the error in K
than an ill‐conditioned one.
[43] Three experiments are conducted to examine how the

retrieval is dependent on the quality of the first guess. In
each experiment, one channel is removed. For example, for
experiment 1 (EXP1), the condition number is calculated
without the 8.7 mm channel. Experiment 2 (EXP2) and 3
(EXP3) are without the 10.8 and 12 mm channels, respec-
tively. For simplicity, the condition numbers are calculated
without the atmospheric correction terms (ignoring the last
three columns in K). Figure 5 shows the averaged condition
numbers for the three experiments using the matchup data-
base. The averaged condition number for EXP1 is signifi-
cantly larger than those for EXP2 and EXP3, indicating the
simultaneous retrieval of LSE is more sensitive (ill condi-
tioned) to the quality of the first guess for 10.8 and 12 mm in
EXP1 than for 8.7 and 10.8 mm in EXP2, and 8.7 and 12 mm
in EXP3 (well conditioned). Therefore, when all three
channels are used, the retrieval will be sensitive to the
quality of the LSE first guess at 10.8 and 12 mm, but less
sensitive to the quality of the LSE first guess at 8.7 mm.
[44] The physical reason for the simultaneous use of 10.8

and 12 mm posing more first guess dependency than others
is that these two channels observe the surface in a more
similar manner than any other two channel combination. As
a result, there is more “correlation” between the two chan-
nels than between any other two channels. This “correla-
tion” is more understandable for hyperspectral instruments,
such as AIRS and IASI. When two channels are spectrally
close enough to each other, the observations from the two
channels are usually not independent. In other words, there
might not be two independent pieces of information. This
makes it difficult to retrieve the two LSE with high accuracy
simultaneously. Although 10.8 mm is not spectrally very
close to 12 mm, they are sensitive to the surface in a very

Figure 5. The averaged condition numbers of the Jacobian
matrix for three experiments. Experiment 1 is without the
8.7 mm channel, experiment 2 is without the 10.8 mm chan-
nel, and experiment 3 is without the 12 mm channel.

Figure 6. The histograms of the correlation index for sur-
face (CIS) for three different channel combinations. In the
bracket, 1, 2, and 3 represent the 8.7, 10.8, and 12 mm chan-
nels, respectively. A CIS closer to 1 indicates that the two
channels are highly correlated. Note that more correlations
exist between 10.8 and 12 mm than between 8.7 and 10.8/
12 mm.
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similar manner. For any two channels, define the correlation
index for surface (CIS) as

CIS i; jð Þ ¼
Ki
Ts

.
Kj
Ts

Ki
"

.
Kj
"

; ð23Þ

where KTs and K" are weighting functions for LST and LSE,
and i and j denote the channel index. For any two channels,
the closer the value of CIS is to 1, the more the two channels
are correlated and the more difficult the retrieval of the two
LSE simultaneously. Figure 6 shows the histogram of CIS
for the three different channel combinations using the sim-
ulation data. Because all three channels are in the TIR
window region, they are very similar to each other, and the
histograms are all centered around 1. However, there are
more correlations between 10.8 and 12 mm than between 8.7
and 10.8/12 mm. As a result, simultaneous retrieval of LSE
for 10.8 and 12 mm is more difficult, and is more sensitive to
the quality of the first guesses.
[45] When applying to real data, the first guesses of 10.8

and 12 mm LSE may be from either regression retrieval
[Wan and Li, 1997] or a previously determined database.
There are many LSE databases available. According to Li
et al. [2010], the monthly MODIS operational product
collection 4/4.1 has a better precision than the AIRS and
IASI monthly products. They are therefore believed to be a
better first guess for the 10.8 and 12 mm LSE.

[46] It is understandable that the retrieval precision is
sensitive to the LZA. Usually, as the LZA increases, the
retrieval precision decreases. However, it is important that
the algorithm works in a wide range of LZAs. Figure 7
shows how the LZA affects the retrieval precision and
accuracy. At all LZAs from 0 to 84 degrees, the algorithm is
able to improve the first guesses, especially when the LZA
is less than 60 degrees. When the LZA is larger than 60
degrees, the precision of LST and LSE at 8.7 mm is
degraded quickly and significantly. It is interesting that the
precision of LSE at 10.8 and 12 mm is only weakly affected
by the increased LZA. This is because fewer constraints are
posed on the LST and 8.7 mm LSE in the inverse of the first
guess error covariance matrix in equation (15). As the LZA
increases, the channel’s sensitivity to the surface decreases.
The retrieval becomes more sensitive to the errors in the first
guesses and the satellite observations. Retrieval variables
with fewer constraints suffer more than variables with strong
constraints.
[47] From Figure 7, a cutoff LZA of 67 degrees is re-

commended; any retrieval with an LZA larger than the
cutoff value is considered unreliable. The cutoff of 67 de-
grees is conservatively chosen for two additional concerns:
(1) at large LZAs, the cloud contamination becomes more
dominant, as the cloud optical thickness are substantially
increased seen by the satellite; and (2) the radiative transfer
calculation at large LZAs appears to have worse accuracy
and precision.

Figure 7. The retrieval accuracy (mean bias error) and precision (STD of error) of (a) LST, (b) 8.7 mm
LSE, (c) 10.8 mm LSE, and (d) 12 mm LSE change with the local zenith angle. The solid lines represent
the precision, and the dotted lines represent the accuracy. The blue lines represent the first guesses, and
the green lines represent the retrievals.
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[48] The retrieval with a large LZA has less precision
because the weighting functions of LST and LSE statisti-
cally decrease with increased LZA. However, even with a
large LZA, if the weighting functions are large enough, the
retrievals may still be accurate, if there is no cloud con-
tamination and the radiative transfer calculation is reliable
(e.g., trained to these angles). Similarly, at low LZA, if the
weighting functions are small, the retrievals might not be
accurate. Figure 8 shows the retrieval precision of LST as a
function of the 12 mm LST weighting function and LZA.
The color of each pixel represents the averaged LST
retrieval precisions (note the color bar is not linear). The
blank pixels are either no retrievals, or the number of re-
trievals is too small to have statistical meaning. The LST
retrieval precisions are better if the 12 mm LST weighting
functions are large, regardless of LZA. On the contrary, if
the 12 mm LST weighting function is small, the retrieval
precisions are worse, no matter how large the LZA is.

Clearly, the LST retrieval precision has a better linear
relationship with the 12 mm LST weighting function than
the LZA. There are two situations in which the 12 mm LST
weighting functions are small: (1) the large LZA lowers the
12 mm LST weighting function, and (2) the excessive
moisture in the atmosphere greatly attenuates the surface IR
emission, reducing the 12 mm LST weighting function. In
both situations, the retrieval will have a bad precision.
[49] It is critical that the algorithm is not sensitive to the

noise in dYn, including the observation noise and the for-
ward model uncertainty. The observation noise can be
estimated from the instrument characteristics, and the for-
ward model uncertainty is 0.2 K for all three channels.
Figure 9 shows how the noise affects the retrievals. Three
different levels of noise are added: half (0.5s + 0.1), normal
(1.0s + 0.2) and double (2.0s + 0.4). s denotes the
instrument noise. The retrieval precision is only weakly
affected by the noise. As the noise increases, the retrieval
precisions decrease, but very slowly. When the noise is
doubled from half to normal, the changes in retrieval pre-
cisions for all four variables are very small. When the noise
is doubled from normal to double, the changes are more
visible, but still very small. The average LST precision
decrease is 0.1 K. And the LSE precision decrease is 0.002,
0.001 and 0.001 for the three channels. These small changes
indicate the physical algorithm is only weakly sensitive to
the noise. Not shown here is that the retrieval accuracy is not
affected by the noise.
[50] When applied to real data, the radiance bias is another

factor that needs to be addressed. The radiance bias may
come from satellite observations due to calibration, dust and
cloud contamination, or from the radiative transfer model’s
failure to accurately simulate water vapor absorption. Dust
contamination is a severe problem when applying the
method over Africa. When dust presents and is not detected,
the satellite‐received radiances usually have negative biases
compared to dust free conditions [Ackerman, 1997;
Peyridieu et al., 2010; Otkin et al., 2009]. Figure 10 shows
how the retrievals are affected by the radiance biases. The

Figure 8. The LST retrieval precision as a function of local
zenith angle and 12 mm LST weighting function.

Figure 9. The LST and LSE retrieval precisions affected by noise, including instrumental noise and for-
ward model uncertainty. The left y axis is for LST, and the right y axis is for LSE. The blue bars represent
half of the noise, the light green bars represent normal noise, and the brown bars represent double the
noise. The retrieval accuracy is not shown because it is not affected by the noise; s denotes the instru-
mental noise.
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control run (light green) does not have any radiance biases.
Two experimental runs are conducted. In the first one,
radiance biases of −1, −2 and −1.5 K are added to 8.7, 10.8
and 12 mm Tbs in one of the three time steps to simulate
dust contamination [Peyridieu et al., 2010]. And in the
second experiment, a radiance bias of 0.5 K is added to the
12 mm Tb to simulate RT model bias. From Figure 10,
the dust contamination has little impact on the retrieval of
the LSE at 10.8 and 12 mm; the accuracies do not change
much (less than 0.002) from the light green to the blue bars.
But it greatly decreases the LSE accuracy of 8.7 mm from
0.005 to 0.013, and decreases the LST accuracy from 0.260
to −2.35 K. The most critical part of the problem is that it is
very difficult if not impossible to estimate the exact impact
of dust contaminations (and cloud contaminations as well)
in the three time steps of real data because of the high
temporal and spectral variations in spatial distribution and
optical properties of dust aerosol (and clouds). In contrast,
the radiance bias in 12 mm affects all four variables; the LST
is changed by +0.32 K, and LSE is changed by −0.008,
−0.007 and 0.008 for the three channels. These changes
indicate the physical algorithm is only partially affected by
the radiance biases.
[51] This paper presents part 1 of this study, focusing on

the methodology demonstration and simulation studies. In
part 2 of this study, the algorithm will be applied to real
SEVIRI radiances. The LSE retrievals will be quantitatively
evaluated using satellite observations with an objective
method [Li et al., 2010].

5. Summary and Conclusions

[52] The goal of this study is to develop a physical
retrieval algorithm effective at retrieving LSE and LST
simultaneously from geostationary satellite observations in
TIR window regions. It is important that the algorithm is
only weakly sensitive to the accuracy of the atmospheric
profiles, the observation noise (instrument noise, forward

model uncertainty and linearization errors), the LZA, and
radiance biases.
[53] A simulation study using the three SEVIRI window

channels (8.7, 10.8 and 12 mm) is conducted to demonstrate
the theoretical basis and the methodology. The radiative
transfer equation is linearized with respect to three variables:
the LST, the LSE and an atmospheric variable, which
combines the temperature and moisture profiles. Analysis
shows that the errors from first‐order linearization are only
0.30, 0.18 and 0.25 K for the three channels. To take
advantage of the high temporal resolution observations from
SEVIRI, the algorithm assumes that the LST is temporally
variable while the LSE is temporally invariable within a
short period of time. Experiments show that three time steps
with a time interval of 3 h are adequate. There are 9 equa-
tions along with 9 unknowns (3 LST, 3 LSE and 3 atmo-
spheric variables). The inverse problem is solved using a
quasi‐nonlinear iterative solution.
[54] The simulation study shows that the algorithm is

effective at bringing the LST and LSE at 8.7 mm to the true
state, no matter how good the first guesses are. The algo-
rithm is also able to improve the LSE at 10.8 and 12 mm,
although it is more dependent on the quality of the first
guesses. It is found that the retrieval is less sensitive to LZA,
but more sensitive to the value of the weighting functions of
LSE and LST. As long as the weighting functions are large
enough (large sensitivity), the retrieval precisions are good.
However, when applying to real data, the retrieval might not
be as good as in the simulation when the LZA is large as
there might be more radiative transfer uncertainty and cloud
contamination in the large LZA. An LZA cutoff of 67 de-
grees is recommended from the study. The algorithm is
found to be weakly sensitive to the observational random
noise, including the observation noise and the forward
model uncertainty, while the retrieval is partially sensitive to
the radiance biases. The radiance bias in different channel
has different impacts on the retrieval. The radiance biases
from dust contamination are very difficult to estimate due to
the high temporal and spatial variations of the spatial dis-

Figure 10. The LST and LSE retrieval accuracy affected by radiance biases. The left y axis is for LST,
and the right y axis is for LSE. The blue bars represent −1 K for the 8.7 mm radiance bias due to dust
contamination. The light green bars represent the control run, which has no radiance bias. The brown bars
represent +0.5 K for the 12 mm radiance bias from the radiative transfer calculation. The retrieval preci-
sion is not shown because it is not affected by the radiance biases.
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tribution and optical properties of dust aerosol. A simple
simulation shows that the radiance biases from dust con-
tamination affect the retrieval of the LST and 8.7 mm LSE
much more than that of 10.8 and 12 mm LSE. The radiance
bias in the 12 mm from the radiative transfer calculation
affects the retrieval of LST and all the three LSEs. This
algorithm has been applied to process SEVIRI radiance
measurements. Results, analysis and evaluation will be
presented in a separate paper.
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